Author Archives: admin

Baker, Peterson & Franklin, CPA, LLP

A full-service accounting and consulting firm in Fresno with a 45+ person staff. BPF is a progressive firm that has grown into one of the largest locally-owned accounting firms in the Central Valley. We believe our continued growth and success is a direct result of providing clients with effective, efficient, and responsive service. Our size allows us to provide a variety of services and specialties, including agriculture, food & beverage processing, auto dealerships, closely-held and family businesses, tax and estate planning, business consulting and auditing.
Website

INTEGRATED MANAGEMENT SYSTEMS FOR THE CONTROL OF ANNUAL MORNINGGLORY IN COTTON

R. J. Thullen and P. E. Keeley

OBJECTIVES: To identify effective systems for the control of annual morningglory in cotton.

PROCEDURES: Several treatments were applied to field plots at the USDA Cotton Research Station in 1989 and 1990 for the control of annual morningglory in cotton. Herbicides were first applied to planting beds at cotton planting in early April and incorporated with a mulcher operated 5 em or 10 em deep in the soil. Rates for these early treatments were 2. 0, 2. 0, and 1. 6 lbs/A, respectively, for cyanazine, methazole, and prometryn. Post emergence and layby treatments were applied as directed sprays to weeds in the drill row at the base of the cotton plants. Post-emergence treatments began soon after the middle of May, whereas the layby treatments were not applied until the end of June. Rates were 1.0 lb/A for cyanazine, 0.5 to 1.5 lbs/A for methazole, and 0.7 to 1.6 lbs/A for prometryn. Although all plots were conventionally cultivated, some were cultivated with special equipment (rods/torsion weeders/spring weeders) to remove small morningglory in the drill row of cotton. When rods were used, plots were cultivated in opposite directions. This cultivation and handweeding were both performed near the end of May. See Table 1 for more information about treatments.

RESULTS: The most successful herbicidal treatment for the control of annual morningglory in cotton was postemergence applications of 1.0 lb/A cyanazine + 2.0 lbs/A MSMA in early June (Table 1). Applications of cyanazine + MSMA to cotton at layby in late June was also helpful in reducing yield losses of cotton. The only other herbicide that provided significant postemergence activity was prometryn. Prometryn incorporated 10 em deep provided the most consistent control of the soil-incorporated herbicides. But control with this treatment was incomplete based on both visual control ratings and harvested cotton (Table 1). Although the cultivator equipped with rods removed many small morningglory plants in the drill row of cotton, too many survived. Based on the results of the handweeding treatment in late May of 1989 and 1990, the weed-free period for morningglory will probably have to extend at least until the middle of June.

FUTURE PLANS: A manuscript of this two year study is being prepared. A second study will begin on the area of this morningglory nursery in the spring of 1991.

For PDF Copy, Click Here.

BIOLOGY AND CONTROL OF BLACK NIGHTSHADE (SOLANUM NIGRUM) IN COTTON (GOSSYPIUM HIRSUTUM)

P. E. Keeley and R. J. Thullen

OBJECTIVES: To determine why control of nightshade with prometryn declined with time in a field study conducted in 1985, 1987, 1988, and 1989.

PROCEDURES: Both seed and soil samples were collected from field plots previously untreated and treated with prometryn. Treated plots were those where rates of prometryn from 1.5 to 2.0 lbs ai/A originally controlled black nightshade in 1985 and 1987 but failed to control nightshade in 1988 and 1989. Untreated plots were the weedy-check plots of the 1985 to 1989 study that had never been treated with a herbicide. Soil samples from the field in early 1990 were treated with 2.00 ppm prometryn and bioassayed in the greenhouse with black nightshade at weekly intervals for 7 weeks. Seed from field plots, which had been collected earlier, was planted into soil freshly treated with 0.25, 0.50, 1.00, and 2.00 ppm prometryn.

In addition to the experiments described above, a final field study was initiated on April 18, 1990 to determine if nightshade had developed some resistance to prometryn or if previously treated soil was now degrading prometryn at some accelerated rate. Plots, 19 m long by 4 m wide, which were treated during 1985 to 1989, were treated in a perpendicular direction with a 4 m band of 2.0 lbs/A of prometryn. The soil was left flat after treating and the
herbicide was incorporated into the soil with a mulcher operated at 10 em deep. The area was sprinkle irrigated at 3 to 5 day intervals for the following 36 days. Total sprinkling time was 35 hours, and total amount of water applied was 9 em. Black nightshade seedlings were counted in treated and untreated strips of all plots 4 weeks after treatment, and visual weed control ratings were recorded at 4 and 6 weeks after treatment.

RESULTS: Degradation of prometryn in the greenhouse appeared to occur at approximately equal rates in soil collected from field plots previously treated or untreated with prometryn. Residues from applications of 2 ppm of prometryn killed all nightshade seedlings for 3 weeks. When some plants began surviving at 5 and 7 weeks after treatment, dry matter production of nightshade was similar in soils previously treated and untreated with prometryn. Nightshade seedlings from seed collected from plots treated with prometryn responded similarly to increasing rates of prometryn under greenhouse conditions as seed collected from untreated plots. Herbicidal activity was sufficiently great from applications of as little as 0.25 to 0.50 ppm to kill most seedlings, and very little growth occurred at 1.0 ppm of prometryn.

When prometryn was applied in perpendicular strips 4 m wide across plots previously untreated and treated with prometryn, no black nightshade seedlings survived for 4 weeks (Table 2). Even at 6 weeks after treatment, visual control ratings of weed seedlings were still 99 to 100%. The fact that control in 1990 was complete for 6 weeks indicates that nightshades have not developed appreciable amounts of resistance to prometryn and degradation of prometryn probably occurred at normal rates. Furthermore, the excellent control obtained indicates that the herbicide was not readily leached from the upper 2.5 em of soil where the majority of the weed seeds germinate. Since efforts failed to provide evidence for the movement of the herbicide with water, the development of weed resistance to prometryn, or accelerated degradation of this herbicide in soil, increasing weed populations were suspected of contributing greatly to the declining nightshade control from prometryn. It is suspected that, if numbers of seedlings estimated ha-1 in Table 2 represents only 10% or less of the soil seed reservoir, weed seed populations have increased from 85 million in 1985 to as much as 800 million in 1990.

FUTURE PLANS: A manuscript reporting the results of this study has been written and was submitted for consideration for publication in Weed Technology Journal.

For PDF Copy,Click Here.

WHEEL PATH RECOVERY

L. M. Carter and J. H. Chesson

OBJECTIVES: To determine the degradation of wheel paths (roads) over time with normal tillage. To determine number of years of normal tillage and cropping to return soil to original or comparable state.

PROCEDURE: The paths to be studies were created in 1984 and used for conduct of system studies with the wide tractive research vehicle (WTRV) until 1989. In 1990 the guidance wire was removed and the paths only were subsoiled on 15 inch centers to a depth of about 18 inches. The entire field was then disk harrowed twice with all traffic east to west to prevent movement of path soil into plot areas. The field was then bedded, preirrigated, and planted to black-eye beans which were allowed to grow until late July. The field was then irrigated to wet the soil to beyond 3 feet and penetrometer measurements made in plot and path areas.

RESULTS: The penetrometer data was analyzed for difference in means and differences in data distribution by treatments. When an accumulative distribution of data by treatments was plotted it was apparent that more variability existed among path data than

in plot data. Using an univariate analysis it can be shown that the standard deviation for the path areas was between 1.38 and 1.43 MPa compared to the treatment areas with 0.64 MPa or 2.14 times greater. Using F-tests the probability that these are not the same exceeds 99.9%. The data could be from normal distributions but the data is skewed with less than expected low values. The path data could be fitted as a uniform distribution. The standard farmer approach to removing compaction (subsoiling) is not sufficient to remove the compaction within the fractured consolidates. There was no difference in the mean penetration resistance among paths and plots in the zone between the surface and 20 em. This may be explained by the disk tillage which probably extended to 20 em. At depths below 20 em the mean penetration resistance for the paths was 15 to 18 MPa compared to 7 MPa for the plot areas which represents a very large difference and could easily explain the poor growth of beans.

Deep tillage with subsoilers will not remove compaction of road-ways within 1 year. Perhaps the bad news is that variability among zones within the tilled path zones is much greater than old plot area and no tillage machinery is available to directly influence this variability.

FUTURE PLANS: The field has been mapped to locate the old path areas. After normal tillage operations in 1991 and a crop, another series of penetrometer reading will be made. These data will be compared to the 1990 data to access any improvement in soil variability or penetrability.

SUMMARY OF UNIVARIATE STATISTICS FOR PATH AND PLOT AREAS PENETROMETER DATA IN MPa

STATISTIC PATH AREA
POOR GROWTH
PATH AREA
W/ NO GROWTH
PLOT AREAS
mean 2.29 2.44 1. 26
S.D. 1.38 1.43 0.64
variance 1.922 2.054 0.407
cv 60.7 58.7 50.6
W:NORMAL 0.93 0.93 0.93
Skewness 0.57 0.51 0.99
Kurtosis -0.41 -0.43 2.61
Mean: top zone 5.6 6.2 5.0
Mean: till zone 15.5 17.5 6.9
Mean: deep zone 15.5 15.4 8.3

For PDF Copy, Click Here.

BEST PRACTICE COTTON SYSTEMS

W.C. Hofmann, L.M. Carter, P.E. Keeley, and L.F. Elliott J.H. Chesson, R.J. Thullen, D. Ballard, and N. Goodell

OBJECTIVES: To develop the criteria for ‘best practice’ cotton production systems. To test experimental component subsystems and the interrelationship of cotton production subsystems including rotational crops. To demonstrate for technology transfer ‘best practice’ systems.

PROCEDURE: Four systems were identified for inclusion in a
field study resulting from a factorial of two systems categories: row spacing and tillage. The ‘best practice’ row spacing was selected as 30 inch as compared to the common practice of 38/40 inch spacing. As the ‘best practice’ tillage, the zone system with precision tillage and controlled traffic was selected to be compared to the common broadcast tillage system. The factorial arrangement allowed: 1} a ‘farmer practice’ 38/40 inch system; 2} a ‘farmer practice’ adaption using 30 inch row spacing; 3} a zone system treatment using 38/40 row spacing; and 4} the best practice system using both zone concepts and 30 inch row
spacings. Treatment 1 and 3 were managed with 6 38-inch row equipment and were 12 rows wide. Treatment 2 was managed with 8 row 30 inch equipment and was 16 rows wide. Special equipment was developed for the best practice treatment #4 using 9-row 30- inch row equipment with wide furrows every three rows for
traffic. In 1989 the south portion of the study was planted using a factorial layout with 6 replications of plots arranged in such a way that cross tillage could be applied to the two farmer practice treatments. The plot size varied by treatment in width with all treatments approximately 300 feet long. In 1990 the north portion was planted using the same arrangement with a different randomization to allow a rotation variable with alternate years. Sampling consisted of soil and petiole fertility, soil and plant water stress and yield.

RESULTS: Measurement of petiole samples shows that the best practice treatments were nitrogen deficit at the end of the growing season compared with the farmer treatments. We surmise that the best practice treatments with the increased water infiltration allowed greater percolation of water and thus greater loss of nitrogen by leaching. Attempts at differential irrigation based upon soil or plant water stress were frustrated by the approximate 7 to 10 day irrigation demand confounded with the need for dry periods for cultivation and water scheduling. Due to obvious and extreme variability in plant growth within plots a covariant was sought. There appeared to be a correlation between sandy areas in the plots and plant height therefore each plot was mapped and the percentage sand soil calculated. With a covariance analysis the estimate of the sand effect was -3.45 (lbs/a) / (% sand) for the 1989 yield data and -3.25 for 1990 in the south test. No correlation was evident for the north test.

Using contrasts among the least square means for the south test and contrasts among the GLM means for the north test, the yield data show important differences among treatments. The first year data for both the south and north tests show that the 38 inch systems yields were 4 to 7 percent greater than the 30 inch systems. Also for the first year both tests indicated no difference in yield between zone and broadcast systems. During the second year (which can be determined only for the south test) the trends reversed: 1) there was no detectable difference between row spacings and 2) the zone system yielded 8.6% more than the broadcast. The change from no difference to a difference between zone and broadcast can be explained by noting that the treatment effect did not exist at the initiation of the plots but was developed during the first year. The 30 inch vs 38 inch differences is difficult to explain since most studies on the station have shown substantial increases with 30 inch
spacing.

FUTURE PLANS: The study became a nightmare in management. The size of the field test, the time to convert equipment, constraints on irrigation timing and lack of personnel and funds for collecting and processing samples compromised the study and no reasonable solution within the resources available could be found. Therefore the study was abandoned with plans to develop a small scale study to evaluate in depth certain of the questions identified by the large study.

For PDF Copy, Click Here

COTTON PLANTERS FOR DIRECT SEEDING INTO COVER CROPS

L. M. Carter and J. H. Chesson

OBJECTIVES: To adapt, modify or design planters and planter controls for direct seeding into cover crops.

PROCEDURE: Determine desirable and achievable planting conditions associated with direct seeding into cover crops, including type of cover crop, method of vegetation suppression and preparation prior to planting. Test operation and performance of unmodified cross slot planter designs. Design mechanisms and procedures for improving performance to acceptable levels. Investigate application of other planter designs and procedures for direct seeding into cover crops.
PROGRESS: Combining two years experience with the unmodified cross slot planter design, six conclusions can be stated: 1) the design is acceptable only within a narrow range of application which includes the original design criteria, ie dry soil planting of grains; 2) the depth of planting varies greatly with soil tilth and moisture with all seeds; 3) the design without modification is unsuited for cotton either for planting into cover crops or into prepared soil; 4) cotton planted into cover crops with this design requires rain or simulated rain for emergence; 5) cotton planted into prepared moist soil did not emerge or the emergence was well below any acceptable standard;
6) cotton planted into dry prepared soil with postplant irrigation emerged acceptably.

     The heavy footprint of the gage-wheel-furrow-closure component was determined to be the cause of poor performance as described in conclusions 2, 3, 4, and 5. A mechanical-hydraulic servo control was designed as a combination seed depth control and footprint pressure control. The design was tested and found to perform as anticipated allowing control of seed depth within .25 inch and accurate control of footprint pressure. With the control operating seed emergence in prepared moist soil was comparable to ‘normal’ planters. With cover crops, the closure pressing could be increased and controlled for improved, if not completely adequate, emergence. The mechanism for the control was described for possible patent and therefore has not been disclosed to the public. Application to other existing designs was claimed in the patent description.

FUTURE PLANS:
The operating parameters of the control will be documented and will be determined. Depending upon interest, the control may be developed for technology transfer beyond publication of any potential patent.

For PDF Copy, Click Here